Skip to content
🤔prompts chat🧠
🔍
question:User My code from mpi4py import MPI from petsc4py import PETSc from petsc4py.PETSc import ScalarType import ufl import dolfinx import numpy as np import pyvista comm = MPI.COMM_WORLD pyvista.OFF_SCREEN = False plot_sol = True # Create the domain (mesh) and its connectivity nx, ny = 8, 8 cell_type = dolfinx.mesh.CellType.quadrilateral domain = dolfinx.mesh.create_unit_square(comm, nx, ny, cell_type) tdim = domain.topology.dim fdim = tdim - 1 domain.topology.create_connectivity(fdim, tdim) # FunctionSpace, Trial, and Test Functions V = dolfinx.fem.FunctionSpace(domain, ("Lagrange", 1)) u = ufl.TrialFunction(V) v = ufl.TestFunction(V) # Dirichlet Boundary Conditions uh = dolfinx.fem.Function(V) # uh.interpolate(lambda x: 1 + x[0]**2 + 2 * x[1]**2) imposed_disp = dolfinx.fem.Constant(domain, ScalarType(10.0)) uh.interpolate(imposed_disp) # Create Boundary conditions boundary_facets = dolfinx.mesh.exterior_facet_indices(domain.topology) boundary_dofs = dolfinx.fem.locate_dofs_topological(V, fdim, boundary_facets) bc = dolfinx.fem.dirichletbc(uh, boundary_dofs) # Source term f = dolfinx.fem.Constant(domain, dolfinx.default_scalar_type(-6)) # Bilinear and Linear forms a = ufl.dot(ufl.grad(u), ufl.grad(v)) * ufl.dx L = f * v * ufl.dx problem = dolfinx.fem.petsc.LinearProblem( a, L, bcs=[bc], petsc_options={"ksp_type": "preonly", "pc_type": "lu"} ) uh = problem.solve() print(pyvista.global_theme.jupyter_backend) if plot_sol is True: u_topology, u_cell_types, u_geometry = dolfinx.plot.vtk_mesh(V) u_grid = pyvista.UnstructuredGrid(u_topology, u_cell_types, u_geometry) u_grid.point_data["u"] = uh.x.array.real u_grid.set_active_scalars("u") u_plotter = pyvista.Plotter() u_plotter.add_mesh(u_grid, show_edges=True) u_plotter.view_xy() if not pyvista.OFF_SCREEN: u_plotter.show() The error: michelangelo@hp:~/Ongoing.Projects/NGVU2/mytests/expression python3 expression.py Traceback (most recent call last): File "/usr/lib/petsc/lib/python3/dist-packages/dolfinx/fem/function.py", line 397, in interpolate _interpolate(u, cells) File "/usr/lib/python3.10/functools.py", line 889, in wrapper return dispatch(args[0].__class__)(*args, **kw) File "/usr/lib/petsc/lib/python3/dist-packages/dolfinx/fem/function.py", line 373, in _interpolate self._cpp_object.interpolate(u, cells, nmm_interpolation_data) TypeError: interpolate(): incompatible function arguments. The following argument types are supported: 1. (self: dolfinx.cpp.fem.Function_float64, f: numpy.ndarray[numpy.float64], cells: numpy.ndarray[numpy.int32]) -> None 2. (self: dolfinx.cpp.fem.Function_float64, u: dolfinx.cpp.fem.Function_float64, cells: numpy.ndarray[numpy.int32], nmm_interpolation_data: Tuple[List[int], List[int], List[float], List[int]]) -> None 3. (self: dolfinx.cpp.fem.Function_float64, expr: dolfinx::fem::Expression<double, double>, cells: numpy.ndarray[numpy.int32]) -> None Invoked with: <dolfinx.cpp.fem.Function_float64 object at 0x7efc2c5e1d70>, Constant(Mesh(blocked element (Basix element (P, quadrilateral, 1, gll_warped, unset, False), (2,)), 0), (), 0), array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63], dtype=int32), ((), (), (), ()) During handling of the above exception, another exception occurred: Traceback (most recent call last): File "/home/michelangelo/Ongoing.Projects/NGVU2/mytests/expression/expression.py", line 31, in <module> uh.interpolate(imposed_disp) File "/usr/lib/petsc/lib/python3/dist-packages/dolfinx/fem/function.py", line 402, in interpolate self._cpp_object.interpolate(np.asarray(u(x), dtype=self.dtype), cells) IndexError: invalid axis: 0 (ndim = 0) Suggestion from the community administrator to a similar issue: imposed_disp = dolfinx.fem.Constant(my_domain, ScalarType((0.0, 0.0))) u_right.interpolate(imposed_disp) You can either wrap it as u_right = dolfinx.fem.Function(V) imposed_disp = dolfinx.fem.Expression(dolfinx.fem.Constant(my_domain, ScalarType((0.0, 0.0))), V.element.interpolation_points()) u_right.interpolate(imposed_disp) or do something along the lines of: class TimeDepBC(): def __init__(self, t=0): self.t = t self.values = None def __call__(self, x): if self.values is None: self.values = np.zeros((2, x.shape[1]), dtype=ScalarType) # Update values[0] and values[1] (the x and y component depending on the self.t parameter) # ... # For instance: self.values[0] = self.t return self.values bc_expr = TimeDepBC() u_right = dolfinx.fem.Function(V) u_right.interpolate(bc_expr.__call__) print(u_right.x.array) bc_expr.t = 5 u_right.interpolate(bc_expr.__call__) print(u_right.x.array)

answer:The issue here is that `uh.interpolate(imposed_disp)` is not working as you might expect because `imposed_disp` is a `dolfinx.fem.Constant`, which the `interpolate` method does not know how to handle directly. The intention appears to be to assign a constant value to every point in the function space, but the API expects either a `numpy.ndarray`, an expression (`dolfinx.fem.Expression`), or a callable Python object defining the values at the interpolation points. Let's address the specific error by using the correct method to assign a constant value to your function `uh`. We will use a Python callable to define the constant value which, when interpolated, assigns a value of 10 to every degree of freedom in the function space `V`. Here's the corrected part of the code: ```python # Define a Python function that returns the constant value def constant_value_function(x): values = np.full(x.shape[1], 10.0) # Assuming `x` is a 2D array where x.shape[1] gives the number of points return values # Dirichlet Boundary Conditions uh = dolfinx.fem.Function(V) uh.interpolate(constant_value_function) # Interpolate using the Python function ``` And now you can proceed with creating boundary conditions and solving the problem in the same way as before. This should resolve the error and allow you to set the constant Dirichlet boundary condition and solve the PDE without any issues. If you want to ensure that the interpolation worked correctly, you can check the values of `uh` before proceeding with the rest of the code.

question:from mpi4py import MPI from petsc4py import PETSc from petsc4py.PETSc import ScalarType import ufl import dolfinx import numpy as np import pyvista comm = MPI.COMM_WORLD pyvista.OFF_SCREEN = False plot_sol = True # Define a Python function that returns the constant value def constant_value_function(x): values = np.full(x.shape[1], 10.0) # Assuming x is a 2D array where x.shape[1] gives the number of points return values # Create the domain (mesh) and its connectivity nx, ny = 8, 8 cell_type = dolfinx.mesh.CellType.quadrilateral domain = dolfinx.mesh.create_unit_square(comm, nx, ny, cell_type) tdim = domain.topology.dim fdim = tdim - 1 domain.topology.create_connectivity(fdim, tdim) # FunctionSpace, Trial, and Test Functions V = dolfinx.fem.FunctionSpace(domain, ("Lagrange", 1)) u = ufl.TrialFunction(V) v = ufl.TestFunction(V) # Dirichlet Boundary Conditions uh = dolfinx.fem.Function(V) # uh.interpolate(lambda x: 1 + x[0]**2 + 2 * x[1]**2) uh.interpolate(constant_value_function) # Interpolate using the Python function # Create Boundary conditions boundary_facets = dolfinx.mesh.exterior_facet_indices(domain.topology) boundary_dofs = dolfinx.fem.locate_dofs_topological(V, fdim, boundary_facets) bc = dolfinx.fem.dirichletbc(uh, boundary_dofs) # Source term f = dolfinx.fem.Constant(domain, dolfinx.default_scalar_type(-6)) # Bilinear and Linear forms a = ufl.dot(ufl.grad(u), ufl.grad(v)) * ufl.dx L = f * v * ufl.dx problem = dolfinx.fem.petsc.LinearProblem( a, L, bcs=[bc], petsc_options={"ksp_type": "preonly", "pc_type": "lu"} ) uh = problem.solve() print(pyvista.global_theme.jupyter_backend) if plot_sol is True: u_topology, u_cell_types, u_geometry = dolfinx.plot.vtk_mesh(V) u_grid = pyvista.UnstructuredGrid(u_topology, u_cell_types, u_geometry) u_grid.point_data["u"] = uh.x.array.real u_grid.set_active_scalars("u") u_plotter = pyvista.Plotter() u_plotter.add_mesh(u_grid, show_edges=True) u_plotter.view_xy() if not pyvista.OFF_SCREEN: u_plotter.show() michelangelo@hp:~/Ongoing.Projects/NGVU2/mytests/expression python3 expression.py Traceback (most recent call last): File "/home/michelangelo/Ongoing.Projects/NGVU2/mytests/expression/expression.py", line 49, in <module> problem = dolfinx.fem.petsc.LinearProblem( AttributeError: module 'dolfinx.fem' has no attribute 'petsc'

answer:It appears from the error you encountered that there's a misunderstanding about the import paths or a change in the `dolfinx` module's structure. The `LinearProblem` class is not found under `dolfinx.fem.petsc` but rather directly under `dolfinx.fem`. This could be either due to an update in the library or an incorrect import. You should be able to fix this by modifying your import as follows: Replace this line: ```python problem = dolfinx.fem.petsc.LinearProblem( a, L, bcs=[bc], petsc_options={"ksp_type": "preonly", "pc_type": "lu"} ) ``` With: ```python problem = dolfinx.fem.LinearProblem( a, L, bcs=[bc], petsc_options={"ksp_type": "preonly", "pc_type": "lu"} ) ``` So the `LinearProblem` should be directly called from `dolfinx.fem`. Please ensure that you are using a version of `dolfinx` that matches the code you are writing. Given that the error indicates a missing attribute, it is also worth checking the official documentation to ensure you are using the correct import paths according to the version of `dolfinx` you have installed.

question:i want to implement in dolfinx a boundary condition given by a constant value function, give me different examples

answer:In DOLFINx, you can implement boundary conditions with constant values in several ways. Below are a few examples to demonstrate different use cases. # Example 1: Constant on the entire boundary In this example, you will set a constant value on all the boundaries of your domain (e.g., `value = 10`). ```python from dolfinx import mesh, fem import ufl import numpy as np # Assume you have a mesh 'domain', function space 'V', trial and test functions 'u' and 'v' # ... # Constant value to impose value = 10.0 # Define boundary condition with the constant value for all boundary facets bc_value = fem.Constant(domain, np.float64(value)) boundary_dofs = fem.locate_dofs_geometrical(V, lambda x: np.full(x.shape[1], True)) bc = fem.dirichletbc(bc_value, boundary_dofs) ``` # Example 2: Constant on a part of the boundary Here you set a constant value on a defined part of the domain boundary, such as `y=0` for the bottom edge of a 2D domain. ```python def bottom_boundary(x): return np.isclose(x[1], 0) boundary_dofs = fem.locate_dofs_geometrical(V, bottom_boundary) bc = fem.dirichletbc(bc_value, boundary_dofs) ``` # Example 3: Constant with the Python function You can also use a Python function if you want to utilize the same constant value function syntax for more complex scenarios in the future. ```python def constant_value_function(x): values = np.full(x.shape[1], 10.0) return values # Create a Function and set it with the constant value using 'interpolate' uh = fem.Function(V) uh.interpolate(constant_value_function) boundary_dofs = fem.locate_dofs_geometrical(V, lambda x: np.full(x.shape[1], True)) bc = fem.dirichletbc(uh, boundary_dofs) ``` Remember, these are just templates and need to be adjusted based on the specifics of your problem, such as the mesh and function space definitions. In each example, the `boundary_dofs` are determined by the geometric location of the degrees of freedom on the mesh (facades or vertices, depending on the mesh topology and finite element definition). The `lambda` function is used to create a logical array representing the facets where the boundary condition applies. For more advanced situations you might want to control the boundary condition in a more refined way or during the simulation, then you would use a Python function or a class to update the values interactively. Please ensure you are using a version of DOLFINx that matches the examples or check the documentation or source code for the correct class and function names.

question:consider class BoundaryCondition(): def __init__(self, type, marker, values): self._type = type if type == "Dirichlet": u_D = Function(V) u_D.interpolate(values) facets = facet_tag.find(marker) dofs = locate_dofs_topological(V, fdim, facets) self._bc = dirichletbc(u_D, dofs) elif type == "Neumann": self._bc = inner(values, v) * ds(marker) elif type == "Robin": self._bc = values[0] * inner(u-values[1], v)* ds(marker) else: raise TypeError("Unknown boundary condition: {0:s}".format(type)) @property def bc(self): return self._bc @property def type(self): return self._type # Define the Dirichlet condition boundary_conditions = [BoundaryCondition("Dirichlet", 1, u_ex), BoundaryCondition("Dirichlet", 2, u_ex), BoundaryCondition("Robin", 3, (r, s)), BoundaryCondition("Neumann", 4, g)] I want to introduce u_ex as constant, how ca i do that? In this example u_ex is defined as u_ex = lambda x: 1 + x[0]**2 + 2*x[1]**2

answer:To define `u_ex` as a constant in this context, you can use the `dolfinx.fem.Constant` class instead of a lambda function. Here's an example of how you might do it: ```python from dolfinx.fem import Function, Constant, locate_dofs_topological from dolfinx import mesh from ufl import TrialFunction, TestFunction, inner, ds # Assume you have a mesh 'domain', function space 'V', trial and test functions 'u' and 'v' # ... class BoundaryCondition(): def __init__(self, type, V, marker, values): self._type = type if type == "Dirichlet": u_D = Function(V) # If 'values' is a Constant, interpolate is not needed, you can directly use it if isinstance(values, Constant): u_D.interpolate(values) elif callable(values): # If 'values' is a function u_D.interpolate(values) # ... extra cases for other types of 'values' facets = mesh.locate_entities_boundary(V.mesh, V.mesh.topology.dim - 1, marker) dofs = locate_dofs_topological(V, V.mesh.topology.dim - 1, facets) self._bc = dirichletbc(u_D, dofs) # ... additional boundary condition types: Neumann, Robin @property def bc(self): return self._bc @property def type(self): return self._type # In your example, you have a function defined by a lambda # u_ex = lambda x: 1 + x[0]**2 + 2*x[1]**2 # Instead, if you want to use a constant value: u_ex_const = Constant(domain, PETSc.ScalarType(1.0)) # Replace 1.0 with your desired constant value # Define the Dirichlet condition using the constant boundary_conditions = [BoundaryCondition("Dirichlet", V, 1, u_ex_const), # ... additional boundary conditions ] ``` In this code, `Constant` is used to create a constant value that can be interpolated directly into a `Function` representing the Dirichlet boundary condition. In your original class `BoundaryCondition`, you need to pass the appropriate `FunctionSpace` (here noted as `V`) and the domain for the `Constant` creation. Do note, however, that the way marker functions are used has undergone some changes in recent versions of DOLFINx. If the above code doesn't work, please consult the documentation for the version of DOLFINx you're using to make sure that marker functions and boundary entities are being located correctly.

Released under the AutoML License.

has loaded